Common failure modes of Data Center back up power systems

Revised: September 25, 2017

© 2016 Cummins Power Generation All Rights Reserved

Welcome!

PowerHour is designed to help our engineer partners to...

- Keep up to date on products, technology, and codes and standards development
- Interact with Cummins experts and gain access to ongoing technical support
- Participate at your convenience, live or on-demand
- Earn PDH

Technical tips:

- Audio is available through teleconference, or your computer (don't forget to unmute)
- You are in "listen only" mode throughout the event
- Use the WebEx Q&A Panel to submit questions, comments, and feedback throughout the event. We will provide sufficient Q&A time after presentation
- If you lose audio, get disconnected, or experience a poor connection, please disconnect and reconnect
- Report technical issues using the WebEx Q&A Panel, or email powergenchannel@cummins.com

Meet your panelists

Cummins presenter:

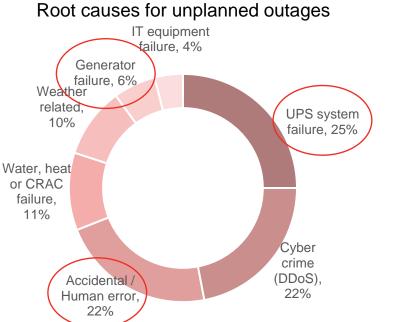
Glaucio De Oliveira Application Engineering, Strategic Accounts (Data Centers)

Cummins facilitator:

Tom Bakritzes, Global Sales Training Manager Cummins

Your local Cummins contacts:

- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- > CO, MT, ND, UT, WY: Joe Pekarek (ioe.a.pekarek@cummins.com), Rocky Mountain Region
- > Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- > UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- > NB, SD, West MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region
- South IL, East MO: Jeff Yates (<u>Jeffery.yates@cummins.com</u>), Central Region
- > TX: Scott Thomas (<u>m.scott.thomas@cummins.com</u>), Gulf Region
- > FL, GA, SC, NC and Eastern TN: Robert Kelly (<u>robert.kelly@cummins.com</u>), South Region
- > NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com): East Region
- CA, HI: Brian E Pumphrey (brian.Pumphrey@cummins.com)
- > WA, OR, AK: Tom Tomlinson (tom.tomlinson@cummins.com)
- > For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator


Introduction

- Data Centers are designed for high reliability but still very often something goes wrong.
- The facilities are complex systems depending on both human and technology activity.
- The most common reason a data center goes down is due to a power failure.
- Virtually all failures can be linked back to errors in the design, testing, maintenance or operation of the facility.

Data Center outage is costly than ever!

Average cost per outage (k)

A unplanned data center outage costs **\$740K** on average, **\$8,851** per minute

Ponemon Institute© Research Report: Cost of Data Center Outages, January 2016

Recent high profile incidents... Caused by failures in power distribution equipment and generator systems

Aug 2016, Airline business, North America

Cause

 Power surge, power / transfer switching failure, IT systems corrupted

Impact

- All operational systems in NA
- 1800 flights cancelled
- Exp.10% quarterly earnings down

Sep 2016, Colocation Data Center, UK

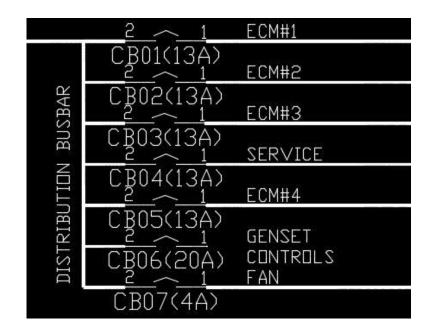
Cause

 Fault in the high-voltage circuit breaker for one of the DRUPS devices, causing a 222ms highvoltage fault

Impact

 Impacted customers including managed hosting providers

2017, Data Center, Asia

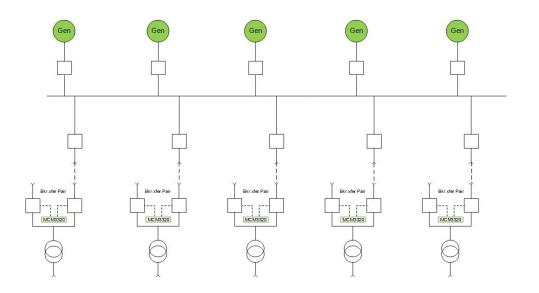


Cause

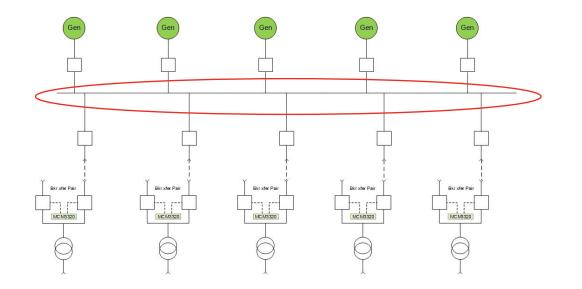
- Generator unable to start during weekly testing
- MCB supplying DC power to the ECM had tripped

Impact

 Need to implement aux. supply monitoring to all gensets worldwide

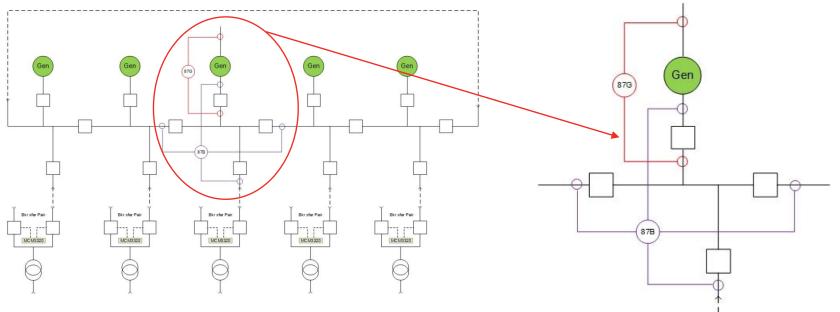

Common Failure Modes for Data Center Backup Power Systems

Electrical systems design
 Mechanical design / installations
 Generator subsystem design and maintenance
 Generator and Load compatibility



Generator paralleling

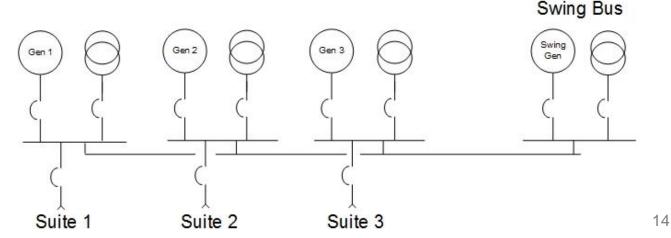
Generator paralleling bus fault – single point of failure



#1: Electrical systems design - Paralleling Recommendations: Segmented Bus Design

Segment the paralleling bus with tie breakers

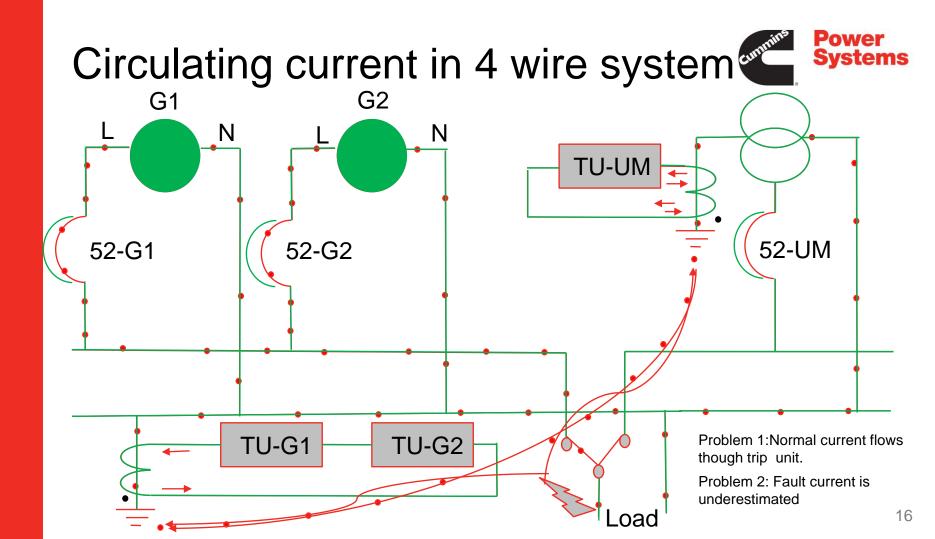
Design the bus protection to take out only one generator for a bus fault.



#1: Electrical systems design example Recommendation: Swing Bus Design

Single Generator / Swing Bus Design

- Each load block has a dedicated generator
- Swing generator provides redundant backup power
- Requires well thought out procedures for testing and maintenance



#1: Electrical systems design

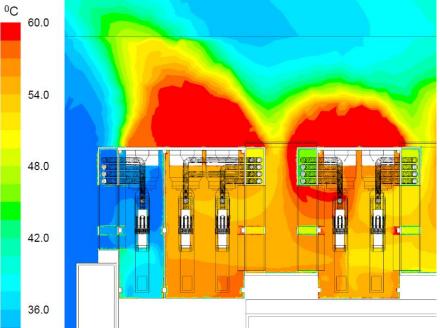
Grounding and Ground Fault Protection on a 4-wire System

- One of the most common misses by consultants
- Why this is difficult:
 - Meeting the code
 - Carrying the neutral (4th wire) throughout the building
 - Providing accurate ground fault protection
 - Eliminating nuisance trips
- Many times the issue is not recognized until late in the design/construction process.

Grounding and Ground Fault Protection on a 4-wire System

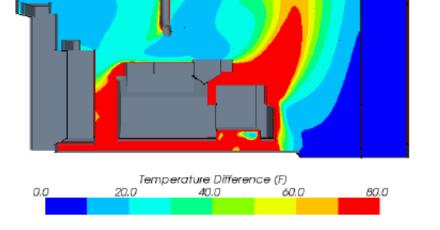
Solutions:

- Single point of ground on utility with generator differential.
- 4-pole breakers and 4-pole transfer switches
- Modified Differential Ground Fault (MDGF)
- Design a 3-wire System. Install transformers when you need line to neutral (277 volt) power source.


#2: Mechanical design and installations Air Flow - multiple generators (microclimate) CFD Analysis:

- Look for Problem Temperatures
- Prevent Exhaust or Discharge recirculation in Building's Air Intake

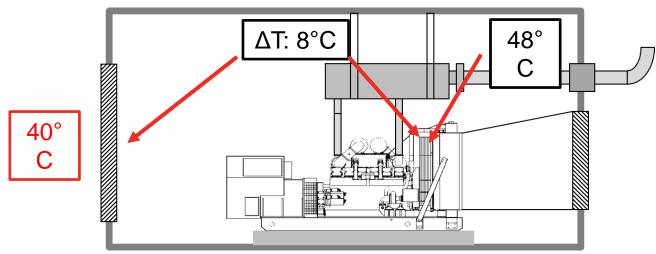
Power


Systems

#2: Mechanical design and installations

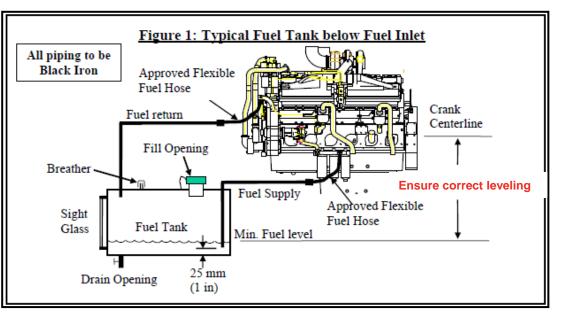
Air Flow – genset enclosure CFD Analysis:

- Verify the design and look for Problem Areas
- Verify the design and validate the installation perform Installation Quality Assurance



#2: Mechanical design and installations

Air Flow - Cooling System Ratings


- Air-on-Core: 40°C ≈ 32°C Ambient
- Ambient: 40°C ≈ 48°C Air-on-Core

#2: Mechanical design and installations

Fuel delivery – fuel restriction, head pressure, etc.

Day Tanks, Belly Tanks, Fuel Header System

Issues to avoid:

- High restrictions in fuel lines (consider static head);
- Air in fuel (check valves, foot valves, etc.)
- Fuel cleanliness and free of water (avoid condensation in the tanks)

Other Reliability Enhancements

- Increased fuel capacity
- Automatic fuel filtering system

#3: Subsystems and maintenance

Batteries / Charger

- Dead or insufficiently charged
- Damaged under extreme environmental condition
- Battery Charger failure to recharge the battery
- Not tested regularly or replaced per maintenance procedure

Fuel systems

- Contaminated fuel clogging fuel filters
- Air in the fuel systems causing frequency/voltage fluctuation and inability to parallel
- Fuel contamination may also affect injectors
- Operation errors (fueling procedure, valve position, etc.)

#3: Design of Subsystems and maintenance Recommendation:

Project design and installation

- Spec for redundant ("change on the fly") fuel filters
- Use filters with indication/alarm for high restriction (clogging)
- Validate installed systems, e.g. Cummins Installation Quality Assurance (IQA)

Test and maintenance

- Follow manufacturer recommendation
- Establish a fuel sampling and maintenance program
- Use telematics / remote monitoring to monitor the condition of the filters during operation

#3: Subsystems and maintenance

Batteries / Charger

- Dead or insufficiently charged
- Damaged under extreme environmental condition
- Battery Charger failure to recharge the battery
- Not tested regularly or replaced per maintenance procedure

Fuel systems

- Contaminated fuel clogging fuel filters
- Air in the fuel systems causing frequency/voltage fluctuation and inability to parallel
- Fuel contamination may also affect injectors

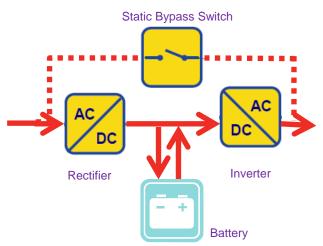
#3: Design of Subsystems and maintenance Recommendation:

Project design and installation

- Spec for redundant batteries and chargers
- Work with experienced supplier for battery charger sizing
- Validate installed systems, e.g. Cummins Installation Quality Assurance (IQA)

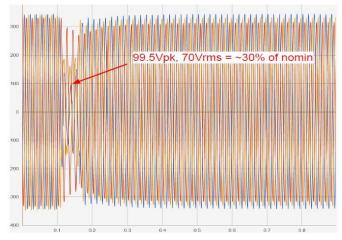
Test and maintenance

- Follow manufacturer recommendation
- Use telematics / remote monitoring to monitor the health of the batteries and chargers



Cause of failure examples

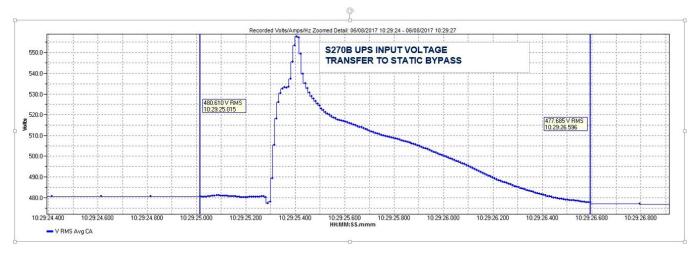
- Oscillation between batteries and generator input
- Coordinating UPS Protection/Alarms with Generator Response
- Voltage rise due to capacitive filters
- Frequency fluctuations
- Synchronizing to bypass
- Step/ramp Loading



#4: UPS / generator systems compatibility

Oscillation between UPS/Rectifiers and generator input

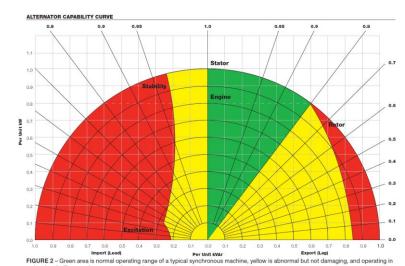
- Can show up after data center is in service and there is a load change.
- Example below caused by change in load ramp time ramp time (battery to generator).


#4: UPS / generator systems compatibility

Coordinating UPS Protection / Alarms with Generator Response

- Sudden switch to bypass operation exposed generator to capacitive load
- Voltage response of the generator caused UPS overvoltage alarms

PF 0.99 Lagging to 0.996 Leading: 558V <= 450 msec



#4: UPS / generator systems compatibility

Recommendation:

- Go through a thorough commissioning procedure
- Let the UPS vendors and genset vendors work together to meet performance based spec
- Make sure your alternator is sized properly for the type of load and operating conditions for the entire life cycle of the facility.

Final thoughts

- Genset backup system is your critical line of defense
- Work with experienced suppliers and leverage their expertise to prevent failure modes
- Develop well thought out testing and maintenance procedures (MOP or methods of procedure)
- Seek long term reliability through integrated systems -Component compatibility improves performance and reliability at systems level

Q&A

- Type your questions, comments, feedback in the WebEx
 Q&A box. We will get to as many questions as we can
- We will publish consolidated FAQ along with presentation and webinar recording on <u>powersuite.cummins.com</u>

Your local Cummins contacts:

- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- > CO, MT, ND, UT, WY: Joe Pekarek (joe.a.pekarek@cummins.com), Rocky Mountain Region
- > Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- > UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- > NB, SD, West MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region
- South IL, East MO: Jeff Yates (<u>Jeffery.yates@cummins.com</u>), Central Region
- > TX: Scott Thomas (<u>m.scott.thomas@cummins.com</u>), Gulf Region
- > FL, GA, SC, NC and Eastern TN: Robert Kelly (<u>robert.kelly@cummins.com</u>), South Region
- > NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com): East Region
- > CA, HI: Brian E Pumphrey (brian.Pumphrey@cummins.com)
- > WA, OR, AK: Tom Tomlinson (tom.tomlinson@cummins.com)
- > For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator

Closing

- Watch out for a follow-up email including
 - A Link to webinar recording and presentation
 - A PDH Certificate
- Visit <u>powersuite.cummins.com</u> for
 - PowerHour webinar recording, presentation and FAQ archive
 - Other Cummins Continuing Education programs
 - Sizing and spec development tool
- Please contact Mohammed Gulam if you have any questions related to the PowerHour webinar (<u>mohammed.gulam@cummins.com</u>)